
Architecture and Implementation of An Information-Centric

Device-to-Device Network

Yu Wu, Matthew Barnard and Lei Ying

Electrical, Computer and Energy Engineering

Arizona State University

ABSTRACT
Today’s mobile devices almost exclusively connect to infras-
tructures for communications and information access; but
advances such as AirDrop and WiFi Direct are bringing device-
to-device communication to the forefront of mobile comput-
ing. Self-organizing ad hoc mobile networks have a wide
range of applications in scenarios where infrastructure is not
available or with limited bandwidth, such as communica-
tions in the aftermath of natural disasters, censorship re-
sistant communications, and battlefield communications. In
this paper, we propose an information-centric device-to-device
network, called ICD2D. The network is distributed and re-
quires no centralized coordination. For each published item
of data, the system creates a metatdata; a publish-subscribe
mechanism disseminates the metadata and facilitates filter-
ing information in a distributed fashion. We implemented a
full-featured system on NS3. Evaluations show significant
improvement in successful information retrieval compared
with OLSR (Optimized Link State Routing), a common ap-
proach to ad hoc routing.

1. INTRODUCTION
Mobile devices such as wearable tech, smart phones,

and tablets have penetrated almost every aspect of our
daily lives, becoming extensions of ourselves. Today’s
mobile devices mainly connect to infrastructure (such
as cellular base stations and WiFi access points) for
communications and information access; but device-to-
device communication technologies, such as AirDrop,
WiFi ad hoc, and WiFi Direct, are making the mobile
ad hoc network a reality.

Given the popularity of mobile devices and device-to-
device communication technologies, the application of a
self-organizing ad hoc mobile network is clear. Though
the infrastructure network will surely remain dominant,
device-to-device mobile networks will fill the gaps where
high deployment and administrative costs or impracti-
cality have traditionally kept networks sparse. We next
list a few such applications.

• Communications for disaster recovery: Natu-
ral diasters or attacks of weapons of mass destruction
can cause catastrophic failure of network infrastruc-

ture, but are less likely to destroy hand-held devices.
Automatically discovering and networking mobile de-
vices in an area can make life-saving information (e.g.
water, food, or power sources) available for connected
survivors.

• Censorship resistant communications: During
the Arab Spring Egypt, Libya, and Syria each shut
down Internet access for an extended period in order
to block information about protests and communi-
cations among protesters. A self-organizing mobile
network can provide an alternative communication
network during these interruptions and is resistant to
government censorship.

• Battlefield communications: In battlefield com-
munications, in particular in hostile environments,
limited bandwidth is available via infrastructure-based
communications such as satellites. A self-organizing
network formed by soldiers’ mobile devices can be
used for coordination in the battlefield.

In the scenarios above, it is impossible to plan ahead
and deploy communication infrastructure a priori. How-
ever, timely information sharing and access are imper-
ative in these live-or-death scenarios. Motivated by the
applications above, we propose an information-centric
paradigm for self-organizing device-to-device networks.
The main contributions of this paper include:

• In the applications mentioned above, the primary pur-
pose of networking is information sharing, instead of
end-to-end communications. Therefore, our system
adopts an information-centric network architecture,
in which each mobile device periodically synchronizes
with its neighbors on metadata of available contents
in the network. This architecture eliminates the need
to maintain end-to-end routes, a benefit we gain over
most existing mobile ad hoc networks.

• The network architecture is completely distributed
and requires no centralized coordination. In our sys-
tem, each item of content is associated with a piece of
metadata created by the publisher. Users subscribe

978-1-5090-1824-6/15/$31.00 ©2015 IEEE 763

Fifty-third Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 29 - October 2, 2015

to metadata filters that automatically select match-
ing metadata from the network, allowing decisions on
content retrieval to be made manually or automati-
cally. This publish-subscribe paradigm for metadata
facilitates distributed information search and is par-
ticularly suitable for spontaneous events where new
contents are continuously added into the network.
From this perspective, our system is also di↵erent
from most existing information-centric network archi-
tectures where a centralized name server is required
for content management.

• We designed and implemented a full-featured system
on NS3. Our experimental evaluation confirms the
novelty of our design and shows significant improve-
ment on fulfilling information requests compared with
OLSR.

1.1 Related Work
The concept of information-centric network (or content-

centric network) is not new. Starting from the seminal
work [1], information-centric networking has emerged as
one of research areas that may revolutionize the future
Internet. A range of problems have been studied, in-
cluding naming [2, 3, 4], routing [5, 6, 7, 8], in-network
caching [9, 10, 11, 12, 13, 4, 14], etc. However, these so-
lutions are almost exclusively tailored for the wired In-
ternet (at best, they include mobile phones at the edge)
and assume the existence of centralized naming server
and content store. Fundamentally di↵erent problems
need to be tackled for a high-performance information-
centric D2D network due to node mobility and wire-
less communications. There have been a series of work
studying the congestion control in content centric net-
work. For example, Saino et al. [15] propose a receiver-
driven congestion control mechanism by predicting the
location of content chunks before requesting. Arian-
far et al. [16] introduce a preliminary protocol based
on classic TCP congestion window which however re-
lies on data packets to explicitly enforce the size ad-
justment of congestion windows. Our work di↵ers from
theirs by considering the end to end latencies of data
block transmission to dynamically throttle the request
rate. Facilitated by an e�cient joint optimization based
scheduling algorithm, our system can achieve satisfiable
content fulfilment ratio, as verified in Sec. 4.

2. OVERVIEW OF THE SYSTEM
In this section, we present an overview of the system,

including data structure, message structure and three
key user operations. The system, as shown in Figure 1,
adopts an information-centric architecture and consists
of three layers.

• Information layer: This layer is dedicated to
the management of local (locally generated or re-

Figure 1: The three layers of an information-
centric D2D network

ceived) information contents. It handles function-
alities such as publishing, ranking, caching and
content forwarding.

• Scheduling layer: This layer is the communica-
tion foundation of the system that schedules data
transmissions based on the type, freshness, and
popularity of a content and based on the state of
the network.

• Networking layer: This layer is responsible for
neighbor discovery and network formation, i.e., main-
taining the connectivity of the network.

2.1 Data Structure
The system includes four types of data as described

below.

• Published data: These are raw data that are gen-
erated by end users and will be requested by other
users in the system.

• Data blocks: A published data is fragmented into a
set of data blocks. Each data block contains the name
of the corresponding published data and a sequence
number that is the position of the block and is needed
for resembling the published data. The ID of a data
block is the hash value of the data block.

• Metadata: During fragmentation, a metadata is cre-
ated for each content. A metadata includes the name,
the name of data blocks, the GPS location when pub-
lished, a set of associated hashtags and a human read-
able field describing the other important information
of the content. The hash value of the content is also
used as the ID of the metadata.

• Hashtags: Hashtags are keywords that are used for
grouping or filtering metadata. Hashtags can be cre-

764

ated when a user publish contents or when a user
requests contents.

2.2 Message Structure and Processing
In this paper, we use “messages” to refer to data

packets that are broadcast in the network. Note that
except the data-block messages, other messages can be
grouped into a single packet as the sizes of these mes-
sages are small.

• Beacons: A beacon message includes node ID, which
is the hash value of the node’s MAC address, and the
GPS location of the node. A mobile device periodi-
cally broadcasts beacon messages to let the neighbors
be aware of its existence.

• Interests: An interest message is a list of (hashtag,
TTL) pairs, where TTL stands for time-to-live which
is the remaining number of broadcasts allowed for the
hashtag. Each mobile device maintains a pending in-
terest table. When receiving an interest message, if a
hashtag is not in the pending interest table and the
TTL is � 1, the (hashtag, TTL) pair will be added to
the table; otherwise, if the TTL in the interest mes-
sage is larger than the TTL (for the same hashtag) in
the table, then the TTL in the table gets updated. At
the beginning of every interest-broadcasting interval,
a mobile device reduces all TTLs in the pending in-
terest table by one and then broadcasts the pending
interest table (as one interest message).

• Catalogs: A catalog message is a list of (metadata,
TTL) pairs where the metadata are all associated
with a specific hashtag, and the TTL (time-to-live)
in the category message is the amount of time before
which the metadata will be removed from the mo-
bile device. Each mobile maintains a catalog library.
When receiving a catalog message, if the hashtag as-
sociated with the catalog message is in the node’s pend-
ing interest table, then catalog is merged into the
catalog library by adding new (metadata, TTL)s to
the corresponding catalogs and updating those (meta-
data, TTL) pairs if the TTL in the catalog message is
larger than that in the library. The catalog library is
refreshed periodically by removing those (metadata,
TTL) pairs with TTL 0. The TTL in the (meta-
data, TTL) pair is set initially by the mobile device
who creates the metadata, and is reset when the data
block associated with the metadata is requested to be
retrieved. In this way, metadata of popular contents
will be kept in the system and metadata of unpopu-
lar contents will be removed from the system avoiding
congesting the network.

• Requests: A request message consists of data block
ID, weight, the content location and TTL. Each mo-
bile device maintains a pending request table. When

receiving a request message, a mobile device adds
(data block ID, weight, TTL) triple to the pending
request table if the data block ID does not exist or up-
dates the TTL if the the data block ID exists but the
TTL in the table is smaller than that in the request
message. During each scheduling interval, the mobile
device broadcasts all or a subset of data blocks that
are in the pending request table. When a data block
is successfully broadcast or the associated TTL be-
comes zero, the corresponding entry is removed from
the pending request table. The weight field in the
request message indicates the importance of the data
block for retrieving the content. For example, in a
video file, I-frames are more important than other
frames for reconstructing the video.

• Data blocks: A data-block message includes a data
block. A mobile device broadcasts a data-block mes-
sage when it receives a data block that is in its pend-
ing request table or receives a request message for a
data block that is in its cache, directed by the joint
scheduling algorithm introduced in Sec. 3.2.

2.3 Key User Operations
From the perspective of end users, the system sup-

ports three primitive operations: publish, subscribe and
retrieve.

• Publish: To publish a content, the content is first
fragmented into data-blocks 1, and a metadata is cre-
ated for the new content. Each metadata is assigned
with a set of hashtags by the user , and is added to
the corresponding catalog.

• Subscribe: Since published data are generated in
the network in real time, users do not have prior
knowledge of available contents. To search interesting
contents in the network, a user periodically broad-
casts “interest” messages to their neighbors. As de-
scribed in Section 2.2, these interest messages will be
disseminated in the network and the mobile user is
expected to receive all catalogs associated with the
hashtags in the interest message. Metadata received
will be further filtered according to local rules defined
by the mobile user, ranked according to a ranking al-
gorithm that takes into consideration the popularity
of contents and other factors, and then sent to user
interface for display.

• Retrieve: From the ranked metadata, a mobile user
can select one or multiple contents to retrieve by send-
ing out request messages. As described in Section 2.2,
when a node receives a request and finds the corre-
sponding data block, it will potentially broadcast the

1
The block does not have to be equal-sized, but maximal size

should not exceed the Maximal Transmission Unit (MTU)

on the MAC layer.

765

data block, depending on the scheduling result to be
introduced in Section 3.2; otherwise, it will broadcast
the request message to its neighbors.

3. INFORMATION-CENTRIC CONGESTION
CONTROL AND SCHEDULING

Due to space constraint, we only present the design
of two key components of ICD2D: information-centric
congestion control and information-centric scheduling.

3.1 Congestion Control
In ICD2D, the tra�c load in the network is deter-

mined by multiple factors including users’ request rates,
content sizes and content locations, so the design is
much more complex than in traditional communication
networks. To develop a tractable solution, we consider
a simple model as shown in Figure 2.

user

1-hop
cache

2-hop
cache

3-hop
cache

Figure 2: A simple model for information-
centric congestion control

Let x
r

denote the request rate of user r and p

r,h

the
probability that the content requested by user r is h-hop
away. Then we consider the following utility maximiza-
tion problem:

max{xr}
P

r

U

r

(x
r

)

subject to:
P

r

x

r

p

r,h

 c

h

8h,

where U

r

(·) is the utility function of user r and c

h

de-
notes the capacity of the network for retrieving one-hop
contents. We remark that the network capacity of re-
trieving h-hop contents is c

h

. A more accurate model is
to consider a network capacity region C and constraint
c = (c1, c2, . . .)t 2 C, where the capacity region is de-
termined by the PHY layer and scheduling algorithms,
and could be di�cult to characterize. We therefore only
consider the simple model above and will study a more
practical model in an extended version of the paper.

Now to solve the network utility maximization prob-
lem above, we consider the following Lagrangian dual

max
xr

P
r

U

r

(x
r

) +
P

h

�

h

(c
h

�
P

r

x

r

p

r,h

)

= max
xr

P
r

(U
r

(x
r

)� x

r

P
h

�

h

p

r,h

) +
P

h

�

h

c

h

,

where �

h

is the Lagrangian multiplier associated with
hop constraint h. Since

P
h

�

h

c

h

is a constant when �

0
h

s
are given, the congestion algorithm should maximize

U

r

(x
r

)� x

r

X

h

�

h

p

r,h

. (1)

In the Internet congestion control literature, it is well-
known that the Lagrangian multiplier �

h

can be mea-
sured using latency. Therefore,

P
h

�

h

p

r,h

can be ap-
proximated using the average latency experienced by
user r.
As an example, assume U

r

(x
r

) = w

r

log x
r

, then the
optimal solution to (1) is

x

r

=
w

rP
h

�

h

p

r,h

.

An adaptive control algorithm is

ẋ

r

= w

r

� x

r

X

h

�

h

p

r,h

.

A key design consideration is the method to estimate
the average latency. We will study this in the perfor-
mance evaluation using NS3.

3.2 Information-Centric Scheduling
This module is the “brain” of the system and sched-

ules all network activities of the corresponding mobile
device. Specifically, this module makes the following
decisions, aiming at maximizing utility for network wel-
fare: how to e�ciently (1) e�ciently transmit/forward
messages, (2) utilize the limited cache and (3) broadcast
the data blocks. We answer these questions through a
joint optimization framework.
We assume a limited amount of system RAM is re-

served for the “cache” usage. The cached blocks should
be broadcast to the neighborhood, subject to the band-
width capacity capped by the link capacity and tran-
sient network condition. We therefore jointly consider
the caching and forwarding problems. We define N
to be the set of neighboring nodes. We assume each
content is fragmented to data blocks of equal size as
in most real-life applications, and each data block can
be transmitted within one scheduling interval (e.g., 100
ms. Let C denote the set of data blocks received by time
slot t, including newly received data blocks and those in
the cache, w

i,c

denote the weight of neighbor node i for
block c, t

c

denote the TTL, y
c,t

denote whether the node
caches content c at time t, S and B denote the storage
capacity and link capacity, respectively. The problem
is formulated into an optimization problem shown in
Eqn. 2.

max
X

c2C

X

j2N
w

j,c

⇥ (y
c,0 � y

c,tj,c+1) (2)

subject to:

(a)
P
c2C

y

c,t

 S, 8t0  t  max
j2N

t

j,c

+ 1

(b)
P
c2C

(y
c,t

� y

c,t+1)  B 8t0  t  max
j2N

t

j,c

(c) y

c,t

� y

c,t+1, 8c 2 C, t0  t  max
j2N

t

j,c

766

The objective function maximizes the overall weight
contributed by the considered node by caching and broad-
casting data block at scheduling interval t0, and any
cached data block needs to be broadcast before their
TTLs expire. Constraint (a) is the storage capacity con-
straint, (b) is the bandwidth constraint, and constraint
(c) implies that any data block can only be cached in
the scheduling interval at which it is received, and be
removed before broadcasting.

We can see the problem (2) is a linear integer prob-
lem, which is NP-complete (The proof is by a reduc-
tion from the satisfiability problem [17]). However, the
problem size is limited because the scheduling process
occurs at a rather short interval (i.e., 100 ms). Dur-
ing one interval, the number of received data blocks is
limited, even under heavy tra�c regime.

The solution of the optimization problem results in
both caching and broadcasting such that:

y

c,0 = 0 ! unfreeze block c

y

c,0 = 1 ! freeze block c

y

c,0 = 1, t

⇤ = argmin

t

{y
c,t

= 0} ! broadcast

block c at time t

⇤ � 1.
It is worthy pointing out that the the joint optimiza-

tion framework supports preemptive scheduling. Newly-
arrived requests with higher weights may cancel the
already-scheduled frozen data blocks. We leave the per-
formance analysis of this scheduling algorithm to the
extended version of the paper.

4. PERFORMANCE EVALUATIONS ON NS3
We implemented a full-featured system on NS3 with

key functionalities at all three layers. We mimicked a
battlefield communication scenario with 100 soldiers in
a 1.5⇥ 1.5km2 area of open space. Each soldier moves
at a speed of 2 meters per second and is equipped with
a WiFi-enabled wearable sensing device supporting 1
Mbps data rate. We assume 20 out of the 100 soldiers
continuously collect data at an average rate of 128 kbps
and publish to the system. Di↵erent unique hashtags
are attached to contents generated by those patrolling
devices, so a soldier can switch to a channel by explicitly
submitting the “interest” message to the corresponding
hashtag. Each solder is allowed to switch to a channel
to request a content per second. For each request, the
TTL is randomly chosen from 400 ms to 30, 000 ms,
and the weight is randomly selected from [0.1, 1]. By
default, the cache size is 256K bytes, realistic for the
configuration of general sensor devices. The block size
is chosen to be 1 K byte.

We conducted our evaluations on our NS3 by simulat-
ing 802.11b WiFi interfaces and configured each device
to the ad-hoc mode. We applied the the constant speed
delay model and the friis propagation loss model [18]
for wireless channels, and some key settings are shown
in Table 1.

Table 1: Parameter configuration on NS3

Parameter Value

TxPower 0.1
TxGain 1.0
RxGain 1.0
RSS -86 dBm

phyMode DsssRate1Mbps
propagation loss model Friis

We consider two representative mobility model, i.e.,
Random Waypoint (RW) and Reference Point Group
(RPG). In RW model, a node randomly chooses a des-
tination and moves with a random velocity between
[0, V

max

] for a certain duration of time. The whole
process repeats until the the simulation ends. RW is
widely used in research community, as a su�ciently
generic model covering most cases. In RPG model, a
group leader determines the group’s motion behavior,
while the other nodes randomly move in the neighbor-
hood of the group leader, with both direction and ve-
locity correlating to those of the group leader. Specifi-
cally, V

m

(t) = V

l

(t) + rand() ⇥ SDR ⇥ V

max

, ✓
m

(t) =
✓

l

(t) + rand() ⇥ ADR ⇥ ✓

max

. V

m

(t) and ✓

m

(t) repre-
sent the speed and direction of node m, while SDR and
ADR indicate the speed and direction deviation ratio
against the leader l , respectively. Our simulation re-
sults were under RW mobility model, unless otherwise
explicitly specified.
We ran the system for 600 seconds, and evaluated

scheduling complexity, network latency, content fulfil-
ment rate and user utility under di↵erent parameter
configurations, e.g., cache size, di↵erent algorithms.

4.1 Scheduling Complexity and Effectiveness
We examined the computational complexity of our

scheduling algorithm, in terms of the amount of time
used to solve the optimization problem (Eqn. 2), re-
ferred as scheduling complexity. The scheduling deci-
sion was made every 100 milliseconds in our system.
Scheduling complexity should be less than the schedul-
ing interval of the system, i.e., 100 milliseconds.
Fig. 3 shows the scheduling complexity of a randomly

chosen device over a duration of 200 seconds (the schedul-
ing complexity of other devices is similar). We can see
that the maximal time is smaller than 6 milliseconds,
much smaller than 100 milliseconds. This result demon-
strates the feasibility of our proposed scheduling algo-
rithm for larger scale problem. We further varied cache
size from 64K bytes to 1024K bytes and found the in-
crease of the scheduling complexity is minor. The aver-
age scheduling delays are shown in Fig. 4. Therefore, it
is promising that our system could be used in real-time
scenarios where short scheduling intervals.

767

2

4

6

8

0 100 200

sc
h

e
d

u
lin

g
 d

e
la

y
(m

s)

time (seconds)

Figure 3: Scheduling complexity over time

1

2

3

4

������

sc
h
e
d
u
lin

g
 d

e
la

y
(m

s)

64KB
128KB
256KB
512KB

1024KB

Figure 4: Scheduling complexity over time

To further evaluate the e↵ectiveness of the schedul-
ing algorithm based on the optimization framework, we
randomly selected a user, and plotted the utility value
over time as shown in Fig. 5. The red curve is the to-
tal utility of the broadcast data-blocks under the pro-
posed scheduling algorithm based on the optimization
framework (Eqn. 2), and the green curve is the total
utility based on a best-e↵ort scheduling which operates
in a first-come-first-served (FCFS) manner, adopted by
general ICN systems. We can see that our design yields
significantly higher utility. The time-average utility of
our design is 1.427 while that of the FIFO is 0.579.

4.2 Request Fulfilment Ratio and Latency
We define “fulfilment ratio” as the fraction of con-

tent requests that are successfully retrieved before their
deadlines (i.e., before the TTL specified in the corre-
sponding request). We first vary the cache size from

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 300 600

u
til

ity

time (seconds)

joint optimization
fifo

Figure 5: Utility contributed to the network by
a user over time

64K bytes to 1024K bytes, as shown in Fig. 7. We
can see a larger cache size indeed yields better perfor-
mance, as the opportunistic caching with a larger cache
increases the chances of local hits. In our settings, we
assigned higher popularity on fresh contents, and old
contents fade out from the system as time goes on. As a
result, larger cache size only yields marginal rate growth
after the cache size becomes su�ciently large. For ex-
ample, a 1024K byte sized cache yields 76.812% fulfil-
ment rate, as compared to 75.58% for a 512K byte sized
cache.
We also compared the performance of our algorithm

with and without congestion control, and further com-
pared them with the routing-based solution, the Opti-
mized Link State Routing Protocol (OLSR), by peri-
odically computing the optimal paths at each device.
“ICD2D-congest” refers to our algorithm with conges-
tion control, “ICD2D-non-congest” refers to our algo-
rithm without congestion control, and “olsr-congest”
represents the classic OLSR algorithm. Fig. 8 plots
the fulfilment ratio achieved by these three algorithms.
We can see that, “ICD2D-congest” significantly outper-
forms “ICD2D-non-congest”. In fact, “ICD2D-congest”
requests 34.89% less contents compared to “ICD2D-
non-congest”, throttled by the the congestion control
module. However, 20.855% more contents are success-
fully received before the deadlines as shown in Fig. 6.
The phenomenon stresses the importance a well de-
signed congestion control algorithm in such a distributed
system.
“olsr-congest” has the worst result, because of two

reasons: (1) the control tra�c triggered by the OLSR
protocol occupied a significant portion of the band-
width, which causes more network contention; (2) the
lack of opportunistic caching increases the number of

768

hops (so the number of transmissions) for content re-
trieval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Request Rate Fulfillment Rate

#
 p

e
r

se
co

n
d

ICD2D-congest
ICD2D-non-congest

Figure 6: Comparison of request rate and fulfil-
ment rate

50%

100%

������

p
e
rc

e
n

ta
g
e

64KB
128KB
256KB
512KB

1024KB

Figure 7: Fulfilment ratio achieved with di↵er-
ent cache sizes.

We further studied the retrieval latency with di↵er-
ent cache sizes and algorithms. Since the latency will be
continuously gauged and fed into our congestion control
module (Sec. 3.1). We evaluate the average per-block
latency, which is the time at which a content block is
requested by the congestion controller to the time at
which the block is returned. Fig. 9 plots the cumula-
tive distribution function (CDF) with di↵erent cache
sizes. We can see larger cache size achieves smaller la-
tency due to increased local hits. But the improvement
becomes marginal when the cache size reaches a cer-
tain size. Fig. 10 plots the CDF of three di↵erent al-
gorithms introduced in Sec. 4.2. “ICD2D-congest” and
“ICD2D-non-congest”have much smaller latency com-
pared to “olsr-congest” due to in-network caching. The
results echo our observations in Sec.4.2.

4.3 Simulation under RPG model

50%

100%

������

p
e
rc

e
n

ta
g
e

���ICD2D-congest���
���ICD2D-non-congest���

���olsr-congest���

Figure 8: Fulfilment ratio achieved by di↵erent
algorithms.

50%

100%

 0 5000 10000 15000 20000 25000 30000

p
e
rc

e
n
ta

g
e

time (ms)

64KB
128KB
256KB
512KB

1024KB

Figure 9: CDF of network latency with di↵erent
cache sizes.

We finally reran the experiment under a RPG mobil-
ity model, where SDR = ADR = 0.3. Similar results
were witnessed as those under RW pattern. Under the
same tra�c pattern, the “fulfilment rate” increases to
86.177% from 69.02%. We believe the reason is that sol-
diers are tending to receive more meta data from other
members in the same group, and therefore chances of
receiving the contents are higher. We also consider the
retrieval latency in this scenario, and the measured re-
sult is 1219.46 ms, compared to 1319.5 ms under the
RW model. The CDF of the network latency is shown
in Fig. 11.

5. CONCLUSIONS
In this paper, we presented a novel design of an information-

centric mobile network based on device-to-device com-

769

50%

100%

 0 5000 10000 15000 20000 25000 30000

p
e

rc
e

n
ta

g
e

time (ms)

ICD2D-congest
ICD2D-non-congest

olsr-congest

Figure 10: CDF of network latency by di↵erent
algorithms.

50%

100%

 0 5000 10000 15000 20000

p
e
rc

e
n
ta

g
e

time (ms)

RPG model
RW model

Figure 11: CDF of network latency under RW
and RPG model.

munications. The network is distributed and self-organizing.
In the system, metadata are disseminated in the net-
work using a publish-subscribe mechanism, which makes
users be aware of available contents that are generated
in the network in real time. Users can request the con-
tents they are interested by sending request messages
and contents are retrieved using a protocol similar to
reverse path forwarding. To improve network perfor-
mance, we developed novel information-centric conges-
tion control and scheduling algorithm to improve net-
work performance. Implementation and evaluations on
NS3 demonstrate the superiority of our design.

Acknowledgement
This work was supported in part by the National Sci-
ence Foundation (NSF) under Grants ECCS-1547294,

CNS-1264012, and CNS-1262329 and the Defense Threat
Reduction Agency (DTRA) under Grant HDTRA1-13-
1- 0030.

6. REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton,

M. F. Plass, N. H. Briggs, and R. L. Braynard,
“Networking named content,” in Proceedings of
the 5th international conference on Emerging
networking experiments and technologies. ACM,
2009, pp. 1–12.

[2] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen,
J. Fukuyama, R. P. Martin, and D. Raychaudhuri,
“Dmap: A shared hosting scheme for dynamic
identifier to locator mappings in the global
internet,” in Proceedings of the 2012 IEEE 32Nd
International Conference on Distributed
Computing Systems. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 698–707.

[3] T. Koponen, M. Chawla, B.-G. Chun,
A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica, “A data-oriented (and beyond) network
architecture,” in ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4. ACM,
2007, pp. 181–192.

[4] G. Garćıa, A. Beben, F. J. Ramón, A. Maeso,
I. Psaras, G. Pavlou, N. Wang, J. Sliwinski,
S. Spirou, S. Soursos et al., “Comet: Content
mediator architecture for content-aware
networks,” in Future Network & Mobile Summit
(FutureNetw), 2011. IEEE, 2011, pp. 1–8.

[5] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and
V. Hilt, “On the design of content-centric
manets,” in Wireless On-Demand Network
Systems and Services (WONS), 2011 Eighth
International Conference on. IEEE, 2011, pp.
1–8.

[6] M. Heissenbüttel, T. Braun, M. Wälchli, and
T. Bernoulli, “Optimized stateless broadcasting in
wireless multi-hop networks.” in INFOCOM,
2006.

[7] A. Siddique, A. M. Hanashi, I. Awan, and
M. Woodward, “Performance evaluation of
dynamic probabilistic flooding using local density
information in manets,” in Network-Based
Information Systems. Springer, 2007, pp.
288–297.

[8] M. Amadeo, A. Molinaro, and G. Ruggeri,
“E-chanet: Routing, forwarding and transport in
information-centric multihop wireless networks,”
Computer Communications, vol. 36, no. 7, pp.
792–803, 2013.

[9] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi,
and S. Pack, “Wave: Popularity-based and
collaborative in-network caching for

770

content-oriented networks,” in Computer
Communications Workshops (INFOCOM
WKSHPS), 2012 IEEE Conference on. IEEE,
2012, pp. 316–321.

[10] H. Wu, J. Li, T. Pan, and B. Liu, “A novel
caching scheme for the backbone of named data
networking,” in Communications (ICC), 2013
IEEE International Conference on. IEEE, 2013,
pp. 3634–3638.

[11] S. Saha, A. Lukyanenko, and A. Yla-Jaaski,
“Cooperative caching through routing control in
information-centric networks,” in INFOCOM,
2013 Proceedings IEEE. IEEE, 2013, pp.
100–104.

[12] J. M. Wang, J. Zhang, and B. Bensaou, “Intra-as
cooperative caching for content-centric networks,”
in Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking.
ACM, 2013, pp. 61–66.

[13] Named Data Networking,
http://www.named-data.net.

[14] H. Xie, G. Shi, and P. Wang, “Tecc: Towards
collaborative in-network caching guided by tra�c
engineering,” in INFOCOM. IEEE, 2012, pp.
2546–2550.

[15] L. Saino, C. Cocora, and G. Pavlou, “Cctcp: A
scalable receiver-driven congestion control
protocol for content centric networking,” in
Communications (ICC), 2013 IEEE International
Conference on. IEEE, 2013, pp. 3775–3780.

[16] S. Arianfar, J. Ott, L. Eggert, P. Nikander, and
W. Wong, “A transport protocol for
content-centric networks.”

[17] G. Ausiello, Complexity and approximation:
Combinatorial optimization problems and their
approximability properties. Springer Science &
Business Media, 1999.

[18] M. Sto↵ers and G. Riley, “Comparing the ns-3
propagation models,” in Modeling, Analysis &
Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012 IEEE 20th
International Symposium on. IEEE, 2012, pp.
61–67.

771

