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Temperature distribution in mixed conduction/convection domains: derivation by the
method of finite differences

Matthew Barnard

Abstract—We consider a prismatic bar with a thermal con-
ductivity of k , surrounded on three sides by a constant temper-
ature environment Ts , the fourth side contacting a fluid with
convection coefficient h. Assuming steady conditions, we apply
nodal analysis to approximate the temperature distribution, using
finite difference equations of heat transfer to model temperature
diffusion. We develop a system of linear equations describing
the configuration of nodes and properties; using numerical
methods to solve this system yields the approximate steady-state
temperature distribution. Finally, we generalize the above process
and automate the complete analysis using iterative methods.

INTRODUCTION

ONE of the most miraculous features of mathematics is
the unreasonable effectiveness of linear composition in

systems modeling. Systems whose behavior is even approxi-
mately linear can generally be parameterized on some property
of interest, composed into a system of transformations of that
property, and solved algorithmically,1 with the tools of linear
algebra.

With the following demonstration we hope to convince you
that linear modeling is not only unreasonably effective, but
unreasonably straightforward to conceptualize and apply. We
take a nontrivial configuration of thermophysical properties
and discretize it by spatial sampling. First we discretize time
by considering a steady state, i.e. at t → ∞, and solving the
final temperature distribution directly. Finally we discretize
time in an iterative diffusion process and visualize thermal
propagation.

In both these methods we emphasize the elegant simplicity
of these linear models: all the analysis, data structures, and
algorithms achieve one thing, which is to slide a bit of heat
from one place to a nearby place along some slope that defines
the heat transfer path. With enough places, we could connect
every point in the universe with a tiny line and transfer heat
across it with extreme fidelity; but it turns out we don’t need
even half that many lines to get interesting results.

We begin by establishing an example problem for which we
develop the analytic solution.

PART 1: PROBLEM STATEMENT

[1, Problem 4.58], but refer to this author’s note on on page 5
of this document.

A long metal rod with square cross section is maintained at
a constant surface temperature Ts,h = 300 ◦C on three sides;
the fourth side is in contact with a fluid sink at T∞,c = 100 ◦C.
Heat transfer inside the rod occurs via conduction with k =

1albeit with cubic time complexity, but it is a finite number of steps, which
is worth getting excited about when considering the size of the domain of
linear modeling.

Ts,h = 300°C

Tc,∞ = 100°C

L = 0.8 m k = 2 W/m•K

h = 10 W/m2•K

Figure 1. Three sides of the rod are on a constant-temperature boundary
(gradient border) and the fourth is on a convective boundary with the fluid
above. The rod is viewed in cross-section, and is assumed to be identical
everywhere along its length (assumption 1).

2 W/m·K. Heat transfer across the fluid boundary is convective
with h = 10 W/m2·K. Using a grid spacing of 0.2 m, determine
the midpoint temperature between the bar and the fluid per unit
length of the bar.

I. PRIMARY ASSUMPTIONS

1) Properties are constant in time and uniform with respect
to geometry,

2) heat transfer is in a steady state,
3) materials have linear thermal behavior, and
4) I can do math (citation needed).

Because both the high (Ts,h) and low (T∞,c) temperatures
are constant, we can assume that the system has reached a
steady state with regard to heat transfer (giving us assumption
2). We therefore need only find the temperature distribution
in the rod, which is a function of two dimensions and has a
reasonably complex form.

II. BOUNDARY CONDITIONS

As depicted in figure 1, we have a 2D cross section of a
thermally conductive rod with four sides on two distinct heat
exchange boundaries: convective exchange with a fluid at a
constant temperature of T∞,c = 100 ◦C, and a condition of
constant surface temperature Ts,h = 300 ◦C.

A. Constant surface temperature

The three sides of constant surface temperature have an
implied heat flux to maintain that temperature. We model
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the boundary as an infinite source of heat with negligible
thermal resistance; we then ignore the heat flux across the
boundary, and consider only the flux caused by the temperature
differential Ts,h−T∞,c. Although two of the sides are identical
due to symmetry, the third side on this boundary has a different
conduction path to the sink; for that reason a derivation of the
flux across each side is not obvious (for example, it is not
simply a third of the total by energy conservation).

B. Convective plane surface

The remaining side undergoes convective heat transfer (loss,
because Ts,h > T∞,c) with the fluid.

III. FINITE-DIFFERENCE METHOD

We approach the temperature distribution by considering a
rectilinear network of nodal points (the grid, see figure 2 on the
current page) across the rod’s cross section; we then compute
heat transfer between these nodes, using them as sensors to
report the temperature values at their locations. Because the
system is linear and in a steady state, the system of heat
transfer equations describing the final state of all nodes will
have a direct solution as a matrix equation.

We find the temperature distribution in the following broad
steps:

1) Find the spanning set of linear heat equations in terms
of node temperatures (section III-A),

2) write these as a matrix equation (III-B), and
3) numerically solve the temperature distribution2 (III-C).

A. Nodal analysis and control volumes

Each node Tm,n is at the center of a control volume, and
heat flows between control volumes through their faces. Dis-
regarding the outermost nodes whose temperature is known,
this mesh forms two distinct types of control volume: internal
conduction nodes with four neighbors and plane convection
nodes with three neighbors.

To save space on the page we will refer to a node’s
neighbors using the compressed notation seen in figure 3.

Ti

Ti
N

Ti
ETi

W

Ti
S

≡ m,n

m,n+1

m,n–1

m+1,nm–1,n

Figure 3. With Ti ≡ Tm,n, the cardinal directions refer to the neighboring
nodes as shown.

2Numerical computation and plotting were done using MATLAB, as
described in section III-C.

Δx = 0.2 m

qin

qin

qin

qconv

+m

+n

Tm,n

Figure 2. The cross section is overlaid with a grid of nodes evenly spaced
by ∆x = 0.2 m. Each node is at the center of a control volume, and heat
flows between control volumes through their faces. Temperature is the control
volume property we observe as we model heat flowing. Dashed boxes outline
two types of control volume: internal conduction and plane convection.
The inbound heat fluxes qin in this diagram are merely implied by the constant
temperature condition and are not part of our analysis (see the paragraph
Constant surface temperature on the previous page).

1) Node temperature by energy balance: Using the energy
balance method, the respective heat equations for the three-
and four-neighbor control volumes (CVs) at a node Ti ≡ Tm,n

are

TE
i + TW

i + 2TS
i + 2h∆x

k T∞,c − 2Ti

(
h∆x
k + 2

)
= 0 (1)

TE
i + TN

i + TW
i + TS

i − 4Ti = 0. (2)

The first of these CV equations is the convection boundary;
for clarity we write it without isolating Ti:

TE
i + TW

i + 2TS
i + 2

h∆x

k
(T∞,c − Ti) = 4Ti. (3)

Now we see that the temperature at the convection nodes
depends on the material properties (rod conduction coefficient
k and fluid convection coefficient h), the size of the control
volume (∆x along the convection plane), and the temperature
difference across the boundary. Consider that the fluid temper-
ature T∞,c will always be the lowest temperature anywhere,
and so T∞,c−Ti < 0; the steady-state behavior of a convection
node then is: its three neighbors contribute heat and the fluid
removes that heat.

The second node equation is straightforward: at steady-state
equilibrium in a linear system (assumptions 2 and 3) each
internal node will be at the mean temperature of its neighbors.

2) Reducing the problem space with symmetry: Before
applying the heat equations to the nodes, we can eliminate
nearly half of the computation effort by recognizing that
the values to the left and right of the vertical centerline
are identical (see figure 4). We will compute only the left
half of the field, and then mirror the results to obtain the
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Ts

T1 T2

T3 T4

T5 T6

T7 T8

qaqbqc

Ts

Ts

Ts

Ts Ts Ts

Figure 4. The nodes on the right half of the cross section are identical to
those on the left half. The centerline nodes refer to the left-hand neighbor
when the right-hand neighbor is called for.

complete view. At the centerline we simply refer to the left-
hand neighbor twice, rather than to both the left- and right-
hand neighbors.

B. Collect heat equations at each node

Numbering nodes as in figure 4, we see that nodes 1..6
are all interior conduction nodes with four neighbors, while
7 and 8 are convection nodes with three neighbors. We write
the internal nodes 1, 3, and 5 with conductive behavior as in
equation (2); nodes 2, 4, and 6 are written similarly, except that
their left and right neighbors are identical due to symmetry.

Difference equation (= 0) Nodes

TE
i + TN

i + TW
i + TS

i − 4Ti 1,3,5

TN
i + 2TW

i + TS
i − 4Ti 2,4,6

TE
i + TW

i + 2TS
i + 2h∆x

k T∞,c − 2Ti

(
h∆x
k + 2

)
7

2TW
i + 2TS

i + 2h∆x
k T∞,c − 2Ti

(
h∆x
k + 2

)
8

Expanding these yields a system of eight linear equations in
eight unknown temperatures:

T2 + T3 + 2Ts − 4T1 = 0

T4 + 2T1 + Ts − 4T2 = 0

T4 + T5 + Ts + T1 − 4T3 = 0

T6 + 2T3 + T2 − 4T4 = 0

T6 + T7 + Ts + T3 − 4T5 = 0

T8 + 2T5 + T4 − 4T6 = 0

T8 + Ts + 2T5 + 2
h∆x

k
T∞,c − 2T7

(
h∆x

k
+ 2

)
= 0

T7 + T6 +
h∆x

k
T∞,c − T8

(
h∆x

k
+ 2

)
= 0.

We then isolate constants, order terms by node index, and
extract coefficients to write the matrix equation found in
figure 5 on the following page. With the system in the form

AT = c, we find the temperature distribution by finding A−1

and taking T = A−1c.

C. Numerical solution

The solution presented in the previous section is easily
solvable with a matrices package like MATLAB.

We begin by specifying the environment and physical
constants (figure 6); i.e. the geometry, material properties,
boundary conditions, etc. Note that while MATLAB does have
a type system, it enforces only the semantics defined by the
language specification, which do not include units or physical
dimensions. This leaves numerical methods highly susceptible
to silently developing broken semantics and producing mean-
ingless results. We encourage the reader to explore what kinds
of mitigations might fortify this code.3,4 This topic, as well as
a number of other forms of program correctness, are as critical
for discussion as any other aspect of this implementation. They
are, however, outside the scope of this article; and so suffice
to say that even this short work was not completed without
time spent troubleshooting mismatched units.

Continuing on, in figure 7 we extract the coefficient ma-
trices seen in figure 5, grouping and factoring wherever it
improves readability. MATLAB offers a number of provisions
for solving matrix equations in this standard form.5 As non-
experts in linear algebra, we prefer the mldivide function
(operator form x = A\C) because it implements any of a
variety of methods depending on certain properties of the input
matrices.[2, section on Algorithms] This approach allows us
to defer any analysis of the input, which may be sophisticated,
and still handle corner cases correctly.

IV. RESULTS

We ran the routine outlined in figures 6 and 7 in MATLAB
2021b for Windows 10.0.19044 on an eighth-generation eight-
core Intel x64 processor with 32 GB 3200MHz DRAM.
The setup and one unique solution are completed in 0.34 ±
0.23 ms (n = 100) . The time complexity of the solution
depends on the implementation chosen by mldivide, but
is generally O

(
n3
)
, so our low time cost depends heavily on

the small number of nodes.
Taking the resultant vector T_K as the solution T to the

final node temperatures, we distribute T over the grid of
nodes and interpret the temperature matrix as a low-resolution
bitmap. Because we found a unique solution, our steady state
assumption (2), which implies that a unique solution exists at
t→∞, is supported.

3A custom structure to represent a dimensional variable can be checked
for correctness at run-time, for example. MATLAB’s type system enables this
because a struct with a unique set of named members constructs a unique
type; therefore a struct with tag and value members has necessary semantics
to produce safe code involving physical quantities.

4The Wolfram Language standard library includes an invasive dimensional
type, Quantity, which is an effective (if verbose) prototype of the con-
cept. For a fluent syntactic example, consider the C++14 standard library
chrono_literals, which allows one to strongly-type literal values (e.g.
1ms) and ensure that the program is statically provable to be dimensionally
correct.

5namely mldivide, linsolve, and by matrix inverse as
x = inv (A) ∗ b
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−4 1 1 0 0 0 0 0
2 −4 0 1 0 0 0 0
1 0 −4 1 1 0 0 0
0 1 2 −4 0 1 0 0
0 0 1 0 −4 1 1 0
0 0 0 1 2 −4 0 1
0 0 0 0 2 0 −2

(
h∆x
k + 2

)
1

0 0 0 0 0 1 1 −
(
h∆x
k + 2

)





T1

T2

T3

T4

T5

T6

T7

T8


= Ts



−2
−1
−1

0
−1

0
−1

0


+

(
h∆x

k
T∞,c

)


0
0
0
0
0
0
−2
−1


Figure 5. The nodal heat model, a system of finite-difference equations, in the form AT = c. The solution to this system is A−1AT = T = A−1c.

1 %% [1/3] Configuration
2
3 % Units are meter Kelvin Watt
4
5 % Geometry
6 Dx = 0.2; %(m) node spacing
7
8 % Thermal properties
9 h = 10; %(W/m2.K) convection coeff.

10 k = 2; %(W/m.K) conduction coeff.
11 H = h * Dx / k %(1) convection node coeff.
12
13 % Boundary properties
14 Ts = c2k(300) %(K) constant surface temp.
15 Tinf = c2k(100) %(K) fluid sink temp.

Figure 6. Configuring the environment to contextualize our model; we also
precompute terms wherever possible and homogenize units (MKS).

1 %% [2/3] Heat equations by finite differences
2
3 % Convection node coefficients
4 a7 = −2 * (H + 2) %(1)
5 a8 = −1 * (H + 2) %(1)
6
7 % Temperature coefficients A in 'At = c'
8 A = [
9 −4 1 1 0 0 0 0 0 %(1)

10 2 −4 0 1 0 0 0 0
11 1 0 −4 1 1 0 0 0
12 0 1 2 −4 0 1 0 0
13 0 0 1 0 −4 1 1 0
14 0 0 0 1 2 −4 0 1
15 0 0 0 0 2 0 a7 1
16 0 0 0 0 0 1 1 a8
17 ];
18
19 % Constants (geometry, material propserties,
20 % boundary conditions, etc.)
21 C = Ts * [−2 −1 −1 0 −1 0 −1 0] ...
22 + H * Tinf * [ 0 0 0 0 0 0 −2 −1] ;
23 C = C' ;
24
25 %% [3/3] Numerically solve matrix equation
26 T_K = A\C

Figure 7. The coefficient matrices of figure 5, with constants factored and
isolated. Note on line 26 that the linear solution is provided by MATLAB’s
mldivide operator rather than by matrix inversion; this method generalizes
to solve a diversity of problems where more specialized methods may perform
better than inversion.[2, section on Algorithms]

Figure 8. Surface plots of the temperature distribution at different levels
of refinement by linear interpolation. Nodes are at grid crossings labeled by
(m,n) . Although potentially useful for building an initial intuition, these
data are heavily synthesized and add a high weight to linearization errors.

A. Visualizing the temperature distribution

Before referring to the figures, consider the unreasonable
effectiveness of linear modeling in this case: a small number
of interpolated subdivisions (refinements) produces a nearly
continuous solution from a depiction bearing very little detail.
The initial result is seen top left of figure 8 on the current
page, followed by interpolated visualizations.

We call these visualizations, and neglect to show a temper-
ature scale, to emphasize that these are synthetic images of
heavily approximated data. At eight levels of refinement the
25–node grid of values has been embellished by 24, 000%—
data that intentionally neglected the diffusion equations to re-
duce computational load. Given the linearity assumption holds,
however, these may in fact be very good approximations, and
so we consider them to be potentially excellent qualitative
tools that require additional work to quantify with confidence.

1) Proposed heuristic to justify interpolated surface maps:
Consider a test that may give quantitative value to figure 8:
for interpolations to a particular level of refinement, perform
a complete simulation with a grid refined to the same level,
so that the two can be sampled coincidently. Sampling at
nodes, take the mean squared error between the distributions.
Repeat this process to obtain the mean squared errors for
a diversity of geometries—the goal here being to simulate
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Figure 9. Isothermal contour lines in the temperature distribution; isotherm
values are in degrees Celsius. This plot reveals important information about
the distribution: when divided into even intervals, the areas of those intervals
are equivalent to the frequency axis of a histogram. Put another way, they
communicate the proportion of the total distribution represented by that
temperature range. This enables us to, for example, analyze the relative
temperature gradient by comparing distances between contour lines.

configurations that are similar to, but computationally less
expensive than, our target problem; for example, we may test
a limited subset of a domain of geometries we’d like to in-
vestigate. Quantify the differences in geometries by taking the
mean squared error between their nodes’ initial temperatures.
Dividing the mean squared errors in temperature by those
in initial conditions yields a measure of the dependence of
interpolation performance on the geometric arrangement; if
this value is approximately zero (by student’s t-test) then we
may consider extrapolating the interpolation performance to
novel geometries. The magnitude of the mean squared error
in temperatures dictates our confidence in the interpolation at
refinement levels on the same order. Because discretization
and numerical computation can introduce convergence issues,
we should only conservatively interpret any subdivide-and-
interpolate refinement at a resolution that has not been directly
simulated.

2) Contour-mapping isotherms : Warnings about approx-
imation notwithstanding, MATLAB provides an exceedingly
useful approximated distribution plot, seen in figure 9. The
suffix in the function’s name, contourf, refers to a solid
color fill between adjacent contour lines. In addition to in-
terpolating for more smoothness and detail, the filled contour
plot embeds a histogram by encoding binned frequencies from
the temperature distribution in the areas of solid color. This is
a marked improvement from our smoothed plots, where only
a vague sense of the binned distribution can be had with any
confidence.

A key value of the contour plot, in this case, is that we
can intuitively grasp the temperature gradient by observing
the spacing between contours. This gradient is the same one
that drives the heat transfer in our system; its constant value,
shown via contours, is indicative of the system’s steady state
(assumption 2). We explored surface plotting in three dimen-

sions toward the same goal, with slopes in the third dimension
representing the temperature gradient (top of figure 16 on
page 10).

Although interactive 3D color visualizations can be power-
ful tools, they have limited utility when projected from a static
viewpoint, potentially without color, as result plots often are.
Especially when comparing datasets, the clearest projections
of two sets may be from different angles so that comparing
them from a common viewpoint obscures important details of
one. For these reasons we suggest that the filled contour plot
of figure 9 is the most broadly useful default visualization for
these results.

V. CONCLUSION TO PART 1

Finally we derive an answer to the problem from the
temperature matrix T, a value neatly approximated by a vertex
on the 270 ◦C isotherm:

Tmidpoint ≈ 272 ◦C.

Author’s note: there is, of course, another part to
the problem, involving the heat flux. I’ve chosen
to reduce the discussion in this part of the report
to be more congruent with Part 2, which does not
evaluate the heat flux. Additionally, I do not vary
the grid spacing in Part 1.

In Part 2 we develop a method that can arbitrarily
vary grid size (top of figure 15) and can be
extended to compute any value within reason, not
just temperature or heat flux. My aim is to focus
on that abstraction; and so when viewing Part 1
in the context of Part 2, I feel that the additional
implementation details and demonstrations are
simply outside the scope of the paper, and I hope
to limit any possible distraction.
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Figure 10. We may be interested in increasing the cooling throughput of this
heat exchanger. With the fluid being the thermal sink, an obvious approach
is to maximize the convective area. Even with a system of only 25 nodes,
producing an analytic solution for every interesting configuration will be
impractical.

PART 2: GENERALIZING AND AUTOMATING THE METHOD

VI. INTRODUCTION TO AUTOMATION

A. Motivation

In Part 1 we considered a particular system, analytically
developed a heat diffusion model within it, and solved the
model’s state at t → ∞. Although we developed the model
in the context of a particular system, it is developed in
terms of abstractions that generalize across many similar
systems; therefore if we automate a solution in terms of those
abstractions, we can automate solutions to all of those other
systems.6

In figure 10 we hypothetically interpret the system in Part
1 as a heat exchanger, then propose a research question
that involves repeatedly running our analysis on changing
geometry. We take this as a motivating example for a value in
generalizing and automating our approach.

B. Defining the general problem domain

A necessary precondition for our process is the system’s
regular rectilinear geometry: this allowed us to uniformly
discretize the system without linearizing any nonlinear forms;
for example, nowhere do we approximate a curved area by
tessellating with squares.

The precondition of regular rectilinear geometry constrains
all of the systems we might consider to ones of the form of
• an m × n graph of temperature values whose edges

represent geometric adjacency,
• with four constant edge weights per node, determined by

adjacency rules,
• where the adjacency rules target an isomorphic (m + 1)×

(n + 1) graph of cells whose values represent thermal
conditions,

• and where the value at each node is the sum of its edge-
weighted neighbors.

Such a form can be trivially constructed by a sequence of
operations on one or more m× n matrices.

6The number of types of systems in the domain of our method is 3m×n

where (m,n) names a square cell identifying one of three thermal behaviors.
The number of systems is infinite because cell properties are free.

C. Accessible abstraction via live user interaction

With the technology available to us, we have a high degree
of flexibility in how we engage with an automated solver
for a general kind of problem. We chose to implement this
demonstration in MATLAB for a number of reasons, an
important one of which being its rich set of user interaction
capabilities. Given rich drawing and user input, we are able to
project the general system directly onto the screen and allow
the user to vary its parameters in place, creating and evaluating
arbitrarily complex new systems at will.

This in-place editing paradigm lends itself to exploring
problems in the way described in figure 10, where the user
progressively explores an idea by making iterative changes
in a way that is both experimentally-structured and creatively
flexible.

D. Program design

User interactivity demands two phases of execution: com-
puting and displaying the state of the system, and gathering
input from the user to modify it. We begin then from the
following sketch of program execution:

1) Configure the system in an initial state.
2)� Compute the state of the system.

a) Compute initial values for nodal analysis.
b) Analyze edges and classify nodes according to

which diffusion equation governs its behavior.
c) Assign weights to node edges according to the

result of (b).
d)� Compute the next system state by computing a

node’s new value as the sum of its weighted
neighbors’ old values.

e) If the system state changed significantly, repeat
from (d).

3) Display the system to the user.
4) Gather input from the user.

a) If the user modified the system, repeat from (2).
b) If the user closed the program, finish.

Our program implements this sketch in the following broad
steps. We first establish the physical environment with default
initial values. Here we construct an object to represent the
physical context for any procedure which computes a physical
quantity:

1 %(m) cross section length on a side
2 Env.Geometry.L = 0.8;
3 %(W/m2.K) convection coefficient
4 Env.Materials.fluid.h = 10;
5 %(W/m.K) conduction coefficient
6 Env.Materials.metal.k = 2;

Notice that this abstraction is firmly grounded in computing
a process across a square cross-sectional area. Recalling the
difference equations in section III-A1, diffusion between nodes
depends on the distance ∆x between them. It would not be
difficult to extend this implementation to support rectilinear
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Figure 11. The field is divided into cells that represent a particular set of
material properties. The user can use the mouse to cycle a cell’s type or
modify its constant properties. Constant-temperature cells (yellow) have a
settable temperature that is given to any node touching that cell. Fluid-sink
cells (blue) similarly have a settable temperature, represented by T∞ in the
convection equations. Metal conductor cells (grey) receive their temperature
via heat transfer with the prior types.

sections by defining ∆x along axes. We simplify the imple-
mentation by computing ∆x from the side length of a square
section and the number of nodes on its edge.

At initialization, we also give the user the option to override
the values of environmental constants. We do not, however,
allow the user to vary physical properties of materials between
cells, because this would violate assumption 2.

For user interaction we leverage MATLAB’s plotting tools
to construct a layered graphic. The simulation area (the field)
is divided into m×n cells, and the cells are drawn as pixels in
an m×n image. Their colors represent their types, and textual
labels represent the cell value. In this case the cell value is
temperature in degrees Kelvin, displayed in degrees Celsius,
but we emphasize that the cell value is any computable
property of the system. A more elaborate implementation
may compute several values at every point, simply by adding
variations on the matrices used here for temperature.

The user manipulates the system by clicking on cells: the
left mouse button cycles the cell through types, and the right
mouse button prompts the user to edit the cell’s value.

Every session of user input initially begins by waiting for an
unlimited amount of time. During this period the user can look
over the system and make decisions. After the first click, we
clear the previously-simulated state and enter an editing mode
where the user can freely change cells. If a period elapses
without any user input while in the editing mode, then the
program exits that mode and begins simulating the system as-
is. The program has now gone from step (4) to step (2) of the
execution sketch.

In the following sections we will describe how the program
computes the system state. We divide step (2) into two phases:
node classification and iterative diffusion. In section VII-A
we lay out the key data structures that define our system
in software. In section VII-B we implement the diffusion
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Figure 12. After a short duration without user interaction the analyzer will
construct the grid of nodes and the iterator will begin diffusing temperature
across it. The results of the nodal analyzer can be seen in the node colors:
yellow nodes receive a constant temperature; light blue nodes have one
convective neighbor, while dark blue nodes have three. Iteration finishes when
the maximum global change in temperature between iterations is sufficiently
small.

equations7 with respect to those key data structures, i.e. as
coefficient matrices. Node classification is the process of
determining those diffusion equation coefficients (weights)
for every edge between nodes. In section §VIII we describe
iterative diffusion, the process of computing new node temper-
atures from the system state using those weights. Finally, in
section §IX we present an interesting example of the program’s
output for a system that would be nontrivial if presented in
Part 1.

VII. PASS 1: NODE CLASSIFICATION

The first analysis pass starts with a matrix of cells defining
the field and results in a matrix of nodes with diffusion paths
between them. We begin by defining the components of that
process; then we outline how the components are initialized.

A. Nodes, edges, cells, and temperature values

a) Cells & classifying nodes: Key to interactivity is
the matrix of cells which the user configures to define a
system. The way that configuring cells defines the system is
via node classification. A node is classified as having either
constant properties (representing a boundary) or properties that
depend on its edges. A node whose properties depend on its
edges has weights assigned to its edges depending on the
cells bordering them. When a node has been assigned either
constant properties or edge weights it is considered classified
and may participate in heat transfer.

b) Edges between nodes in an adjacency graph: Since
the matrix of nodes is homeomorphic to the cross-sectional
area, we can define adjacencies between nodes (m,n) and
(m + 1, n), (m,n) and (m,n + 1), and so on. These adjacen-
cies represent heat transfer paths, and so we capture them as

7See difference equations in section III-A1.
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edges between nodes. Edges are implemented by a vector W
of four weights at each node. Each edge weight is a sum of
the weights appropriate for the two cells bordering that edge.
Computing these edge weights is the primary purpose of the
node classification phase.

Two cells bordering an edge between nodes may define a
conduction path between those nodes; in this case the behavior
of those nodes will be a superposition of this conduction path
with the nodes’ other paths. Our model is designed for mixed
convection and conduction with constant-temperature bound-
aries; there are therefore nine possible ways to classify each
edge based on its bordering cells (note that edge classifications
are not independent).

Given an edge that exits the node (m,n) in the direction
u, and the node is surrounded by cells with centers (x, y), we
classify the edge by assigning its weight W in the following
way:

procedure CLASSIFYEDGE(m,n,u)
W ← 0 . initialize edge weight
V← (x, y, v)1...4 . get cells

for all (x, y, v) in V do
v← (x−m, y − n)
if dot (u,v) > 0 then

W ←W + v
end if

end for
end procedure

where v is 1/2 for conductive cells, or a number that depends
on the number of convective cells.

A node is classified when all of its edge weights have been
assigned.

c) The structure of a node: The matrix of nodes repre-
sents the set of points (m,n) at which we sample the system’s
state; as such, the minimum type that can comprise a node is
a scalar value representing the temperature at that point.

In fact, representing nodes as a set of matrices, each
reflecting a particular system property, has features that are
computationally desirable. For one, when the type of a node is
compact, a greater number of nodes can fit in the processor’s
fastest caches. Especially when the operations are relatively
simple, as in linear systems, the overhead of retrieving nodes
from RAM can easily dominate the time performance of
our system; compact node types therefore have significant
upside opportunity. Also, if operations on a particular value
are independent of others, then the entire matrix for that value
can be transferred to a parallel process with no risk of program
incorrectness and no synchronization cost. This is considered
a data-oriented design, and it can be especially suited to this
type of system.

Rather than a data-oriented design, we use an object-
oriented design for nodes. Here the type of a node is a
composite of all the properties relevant to that node. The
primary motivation for this is in consideration of the reader,
who may be more familiar with object-oriented designs, as that
is the dominant paradigm taught in universities and used in
production. Ostensibly, it may benefit one in conceptualizing

the system if a node’s entire state is encapsulated in one
mentally-portable symbol.

B. Heat diffusion equations

When classification is complete, every edge between nodes
has sufficient information encoded in its coefficient to model
heat transfer between any two nodes. Now, if we compute the
transfer between every two nodes, then the result is a quasi-
equilibrium state where temperature values have diffused along
heat transfer paths.8

The computation accomplishing diffusion at each node9

then is

(Ti)next =
[
TE
i TN

i TW
i TS

i 1
]


WE
i

WN
i

WW
i

W S
i

W const
i

 . (4)

Because this equation depends only on the current state, which
is fixed, the computation is embarrassingly parallel for any
number of nodes.10

Recall that in section §IX we justified the steady-state
assumption (2) by confirming the existence of a unique state
at t → ∞. If we correctly implement the same system in an
iterative way, then it follows that the iteration will converge to
the unique end state. Following that confirmation, we would
take failure to converge as a sign of program incorrectness
(including numerical error, which is controlled in a correct
program).

A major implication of the end state being at t→∞ is that
we cannot partition the duration between start and end into a
finite number of finite durations. In other words, a diffusion
model that iterates through intermediate states cannot converge
in a finite number of steps. With that in mind, in section §VIII
we discuss a strategy for arriving at a single solution in a
reasonable amount of time.

VIII. PASS 2: ITERATIVE DIFFUSION

A. Convergence

With the node equations (4) producing intermediate states,
we need only repeatedly and progressively take these states
until one is a sufficiently near approximation of the end state.
A common method for halting such a process is to assign

8If the steady-state assumption (2) holds, then the quasi-equilibrium states
are distributed over t = (0,∞). Although we have taken a finite number of
intermediate states, those states would only converge at t→∞, so there are
infinitely many of them. We can partition an infinite duration into infinitely
many finite durations, so the time intervals between intermediate states are
knowable. Our system simply does not encode any relations involving rate,
so we cannot discuss the time steps of our iterator as is.

Note that in Part 1 the assumption did hold, so a failure at this point may
signify incorrect implementation.

9Recall the neighbor naming convention from figure 3.
10Nodes can be evaluated iteratively, but that can also be arbitrarily

partitioned into parallel iterative processes. We have the freedom to dictate
memory layouts and take arbitrary batches of nodes, which is sufficient to
suggest that we can always find the optimal parallelization strategy for this
problem at run-time.
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Figure 13. Plotting all node temperatures (top) shows that convergence occurs
in relatively few iterations and with no oscillation (despite no effort being
made to adapt step sizes or otherwise improve performance). Given that the
temperatures are on the order of 102, we determined the distribution to be
converged when the maximum temperature change is less than one Kelvin
(∼ 1%) per iteration (bottom).

a minimum cutoff value for the magnitude of the difference
between states.

We use the minimum delta cutoff to finish iterating when the
maximum change of any node is smaller than one Kelvin.11

In figure 13 we plot the temperatures of each node and the
maximum change in temperature between iterations. Not only
does the system converge, it converges in as few as ∼ 101

steps.

B. Time performance

When we describe a program as interactive we adopt a
duty to give the user a reasonably frustration-free experience.
For our system, a primary source of user frustration is delay
between inputs and outcomes.

In the interaction phase, the user may desire to input mul-
tiple changes in rapid succession; delays related to changing
cells would therefore impede the user’s freedom to express
their desire at a desired rate. There is very little logic involved
in effecting the user’s actions, though, so that phase is trivially
optimizable for a smooth experience.

In the iteration phase, our program’s contract to result in
a single end state means that user input is meaningless in
the context of intermediate states. The entire iteration phase
is therefore a delay to user input, and potential source of
frustration.

For the purpose of demonstration, we choose that the inter-
mediate node values are visible during iteration. We believe
this provides the user an enhanced perspective on diffusion as
an ongoing process—something that is hidden by the method
in Part 1. As we see in figure 14, drawing those updates

11The specific value of one Kelvin represents a change on the order of 0.1%
of the initial temperatures in the problem from Part 1 (figure 1 on page 1).
For this reason, our program may not be suitable for configurations with
temperatures lower than −102 ◦C because iteration will end while changes
are greater than 1% of initial conditions.
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Figure 14. We evaluated the time performance of our method by timing
each iteration, shown here for two configurations: the long steps (red) are
produced in interactive mode, where a majority of iteration time is spent
updating the user interface; the short steps (blue) are measuring iteration only,
after warming up for fewer than five runs. We can see that, without graphical
concerns, the solution is approximated in fewer than 50 ms.

poses an order of magnitude time penalty to each iteration
step. We face a trade-off between improving the experience
with visible diffusion and harming the experience with longer
delays between input.

Our solution is to accept the time cost of a visibly dynamic
system, because we value that the dynamic visualization is a
unique quality of an iterative implementation. At this point we
can improve the user experience in a number of ways: reduce
the time per iteration, reduce the number of iterations, reduce
how frequently it performs iterations, etc. But the system in
figure 14 is performing ∼ 101 iterations at ∼ 101 ms each; we
would need to reduce one of those by an order of magnitude
to produce an uninterrupted user experience. We believe that
simply performing iterations less often is the simplest solution,
and benefits from being independent of the simulation; i.e.
the user will have a controlled uninterrupted experience until
simulation, no matter how long simulation takes.

The user may want to configure more than one element of
their system before they care to see any result; we think this
desire specifies the solution: allow the user to input multiple
times in sequence before simulating their changes, but begin
simulating automatically. We think a responsive design that
gets out of the user’s way, but also takes over control when
the time is right, can provide a minimum of friction between
the material and the person engaging with it.

IX. RESULTS OF AUTOMATED ANALYSIS & SIMULATION

With the main program loop defined by the user interaction
pattern, we draw the cells and nodes to the screen and iterate.
When the program starts it determines that it has been a
substantial amount of time since the last time the user clicked,
which was likely never, and so it initializes the nodes with a
simulation of the default state. When the iteration converges,
the nodes are left visible in their last state.

Top of figure 15 on the following page we see the default
state with a few modifications by the user, the program having
finished iterating and begun waiting for input. We point out
that the default state reflects the problem from Part 1, but the
grid has been expanded from twenty-five to eighty-one nodes,
a 224% increase.
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Figure 15. With our automated method it’s trivial to approximate distributions
on arbitrarily large grids of nodes. Here the rod is divided into segments
≈ .09 m long, resulting in a 2.25 times greater node density than in our
original solution. Deriving this linear system analytically as we did before
would involve finding equations of 81 temperatures values; put another
way, our method found a total of 405 edge coefficients in fewer than 12
milliseconds.

In fact the grid is an arbitrarily large square, but we keep
the resolution coarse for a legible demonstration. We highlight
that difference for two reasons:

• We propose just the increase in resolution to be sufficient
motivation to carry out this work. If there is any reason
to solve this problem, then we should be interested in
whether the solution we find is independent of the method
used. Adjusting the stride of our sampling, i.e. increasing
the number of nodes, can help to reveal discretization or
numerical artifacts, as well as reveal details otherwise lost
in approximations. If we should perform a simulation at
one level of detail, then we should perform a simulation
at a variety of levels—and tools like these are the only
efficient way to affect that.

• We want to restate how unreasonably effective linear
modeling is: we identified components in a system,
defined lines connecting them according to rules, and
mapped that conceptual model nearly directly onto a com-
putational model, with smooth high-resolution graphics.
What a time to be alive.

At the bottom of figure 15 is the result of our efforts:
a temperature distribution for an arbitrary configuration of
elements from Part 1, produced in fractions of a second,
accessible by anyone who can use a pointing device.

Figure 16. We finally experimented with different methods of visualizing the
distribution. The surface plot in three dimensions offers a compelling view of
the slope of the temperature gradient, but the view in two dimensions allows
the temperature to be reasoned about in terms of the cross-section’s geometry.

In section IV-A we discussed visualizing the results with
area and contour plots. We also explored three-dimensional
visualization; for example, in figure 16 we see that the distri-
bution plots shown previously were orthographic projections
of a surface. Although we find these plots indispensible in an
interactive context, they pose a challenge to media interop-
erability. We believe a system like this should be primarily
capable of producing visualizations at its highest quality for
a static flat medium, so that the information it reveals can be
maximally accessible.

X. CONCLUSION

We exercised the method of finite differences to construct a
model of heat diffusion in a cross section. We used linearity
to superimpose different diffusion functions, constructing arbi-
trary combinations of certain physical-effect “submodels.” We
generalized this process until it could be automated at high
speed. Throughout our work we made only straightforward 
conceptual steps. We hope that our work goes a small way 
to demonstrating how inspiringly simple and useful building 
these linear worlds can be.
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PART 1
Solving a system of equations by mldivide

clear;clc

% Unit conversion
c2k = @(c) c + 273.15;
k2c = @(k) k - 273.15;

[1/3] Environment
% Geometry
Dx   = 0.2; %(m) node spacing

% Thermal properties
h    = 10; %(W / m2.K) convection coeff.
k    = 2; %(W / m.K)  conduction coeff.
H    = h * Dx / k   %(1) coeff. in convection

% Boundary properties
Ts   = c2k(300)     %(K) rod const. surface temp.
Tinf = c2k(100)     %(K) fluid sink temp.

H =

     1

Ts =

  573.1500

Tinf =

  373.1500

[2/3] Heat equations by finite differences
% Convection node coefficients

1



a7 = -2 * (H + 2)   %(1)
a8 = -1 * (H + 2)   %(1)

% Temperature coefficients A in 'At = c'
A = [
  -4  1  1  0  0  0  0  0    %(1)
   2 -4  0  1  0  0  0  0
   1  0 -4  1  1  0  0  0
   0  1  2 -4  0  1  0  0
   0  0  1  0 -4  1  1  0
   0  0  0  1  2 -4  0  1
   0  0  0  0  2  0 a7  1
   0  0  0  0  0  1  1 a8
];

% Constants (geometry, material properties, and boundary conditions)
C =     Ts   * [-2 -1 -1  0 -1  0 -1  0] ...
  + H * Tinf * [ 0  0  0  0  0  0 -2 -1];
C = C';

% Solve the temperature distribution
T_K = A\C;

% Display result
Temperatures = ...
  table(T_K, k2c(T_K), 'variablenames', {'T_Kelvin', 'T_Celsius'})

a7 =

    -6

a8 =

    -3

Temperatures =

  8×2 table

    T_Kelvin    T_Celsius
    ________    _________

     565.37 292.22  
562.3 289.15  

     552.87 279.72  
     545.33 272.18  
     527.63 254.48  
     513.28 240.13  
     471.21 198.06  
     452.55 179.4  
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[3/3] Visualization
% Fill the whole grid with Ts and then overwrite with the solved
% temperatures, leaving Ts on three sides.
T = Ts * ones(5,5);
% Unzip the dumb stride 2 numbering scheme we used
for i = 2:2:8
   % Orient so it plots with the fluid on top
   row         = 1+i/2;
   % Mirror to restore symmetry
   T(row, 2:4) = T_K(i-1);
   T(row, 3)   = T_K(i);
end

figure(2);

% Unrefined nodes grid
[M,N]   = meshgrid(1:5);
% Refined grid spacing
dg = 1;

for i = 1:4
    % Make a refined grid to interpolate onto
    [Mq,Nq] = meshgrid(1:dg:5);
    dg = dg / 2;

    % Interpolate onto refined grid
    Tq = interp2(M, N, T, Mq, Nq);

    % Draw interpolated temps
    subplot(2,2,i);
    s = surf(Mq,Nq,Tq);

s.EdgeColor = 'none';
    view(2);

    % Draw grid
    hold on;
    s = surf(M,N,T);

s.FaceColor = 'none';
s.EdgeAlpha = 1;
s.LineStyle = ':';

    view(2);

    % Clean up axis labels
    if i < 3;     xticklabels([]); end
    if ~mod(i,2); yticklabels([]); end

    if i == 1
title('Uninterpolated

 temperatures', 'interpreter', 'latex', 'fontsize', 14);
    else

3



        title(sprintf('Refined %d times',
 2^(i-1)), 'interpreter', 'latex', 'fontsize', 14);
    end
end

text(0.5, -0.1, 'm', 'interpreter', 'latex', 'fontsize', 14);
text(-5.2, 6,'n', 'interpreter', 'latex', 'fontsize', 14);

figure(1);
% Draw contour plot with temperature values labeled
c =
 contourf(k2c(T), 'showtext', 'on', 'levelstepmode', 'manual', 'levelstep',
 10);
% Draw node grid
grid on;
set(gca, 'xtick', 1:5);
set(gca, 'ytick', 1:5);
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%
% Temperature distribution in a mixed conduction/convection domain:
%   derivation by the method of finite differences
%
% Matthew Barnard
% for MEE 340 Heat Transfer
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% Spring 2022
%
% Dear reader:
%
%   In general this code is written for structural simplicity and not
 efficiency.
% Where obvious I've taken the naive approach so that execution
 follows the
% path one imagines when sketching the problem.
%   If you want to implement this kind of thing for real then my first
% suggestion is to divest yourself of any object-oriented inclinations
 and turn
% this into operations on matrices. This would be considered a classic
 example
% of a data-oriented design problem.
%   For an excellent introduction to data orientation in general,
% see Mike Acton's talk "Data-Oriented Design and C++" at CppCon 2014.
% You don't need to know C++ to see a solution to this problem in
 Mike's
% description of his problem.
%

clear;clear global;clc;

global DEBUG INFO PROMPT_PROPERTIES;
DEBUG = false;
INFO = true;
% If true then I'll ask you what the material properties should be.
PROMPT_PROPERTIES = false;

Track mouse input and cause a delayed effect
on mouse up

We track the mouse click so we can effect a delayed reaction: we don't start simulating until the user has
stopped clicking for a while.

global Input;
Input.last_click_t = uint64(0);
Input.mouse_timer  = timer;
Input.mouse_timer.StartDelay = 1;
Input.mouse_timer.TimerFcn = @pressEnter;
Input.last_m = 0;
Input.last_n = 0;

Cache plot objects, which are expensive to
construct and destroy

global Handle;
Handle.surf3 = 0;
Handle.ctexts = [];

2



Define the system's physical environment
This procedural style with heavy global definitions up front is great for getting ideas working. If you're
going to write code like this that you plan to share or maintain then all of these globals need to be passed
as state.

global Env
% As taken from the original problem 4.58
Env.Geometry.L = 0.8;  %(m) cross section length on a side

% The materials should have uniform properties for our heat equations
Env.Materials.fluid.h = 10;   %(W/m2.K) convection coefficient
Env.Materials.metal.k =  2;   %(W/m.K)  conduction coefficient

Show default physical constants to user and
allow changing before start

True if we have a valid value

hb = false;
kb = false;

while PROMPT_PROPERTIES && (~hb || ~kb)
  prompt = {'Metal conduction coefficient k = ', 'Fluid convection
 coefficient h = '};
  dlgtitle = 'Material Properties';
  dims = [1 35];
  definput = {num2str(Env.Materials.metal.k),
 num2str(Env.Materials.fluid.h)};
  answer = inputdlg(prompt,dlgtitle,dims,definput);
  if length(answer) == 2
    % Accept numbers that aren't j
    % TODO: does it interpret pi?
    [k, kb] = str2num(answer{1});
    [h, hb] = str2num(answer{2});
    if ~isreal(k); kb = false; end
    if ~isreal(h); hb = false; end
    if hb; Env.Materials.fluid.h = h; end
    if kb; Env.Materials.metal.k = k; end
  end
end

Cells define the constant and initial properties
throughout the field

For example, the interior of a cell is a uniform material with uniform thermal properties. The interior of
a cell may also be a boundary condition, in which case nodes in contact with that cell will acquire that
condition (or, if a node contacts multiple distinct conditions, it will aquire a mean).

% Cell types
global ConstantTemp Conductive Convective
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ConstantTemp = 0;   % Boundary condition -- fixes a node that touches
 it.
% These types select a diffusion equation across the edge bordering
 the cell.
Conductive   = 1;   % F
Convective   = 2;   % Surface convection condition

% 1 = metal rod interior
% 2 = fluid
% Any other number = a constant surface temperature in *C
initial_cells = [%          <------- m
  300 300 300 300 300 300 300 300 300 300  %   n
  300  1   1   1   1   1   1   1   1  300  %   |
  300  1   1   1   1   1   1   1   1  300  %   |
  300  1   1   1   1   1   1   1   1  300  %   |
  300  1   1   1   1   1   1   1   1  300  %   v
  300  1   1   1   1   1   1   1   1  300
  300  1   1   1   1   1   1   1   1  300
  300  1   1   1   1   1   1   1   1  300
  300  1   1   1   1   1   1   1   1  300
   2   2   2   2   2   2   2   2   2   2
% top of screen
];

global width_cells height_cells num_cells
width_cells  = size(initial_cells, 2);  % I can look up the order of
 axes for size every day until I die and I still won't learn it
height_cells = size(initial_cells, 1);
num_cells    = width_cells * height_cells;

global cells;
for m = 1:width_cells
  for n = 1:height_cells
    % STRUCT CELL {
    cells(n,m).m = m;
    cells(n,m).n = n;
    % Naming your variables with units is the least you can do.
    % If you're writing critical engineering software then use C++ and
 develop
    % a templated unit system so you can _statically_ prove that you
 won't
    % crash anything into mars.
    cells(n,m).T_K = CtoK(100);

    cell = initial_cells(n,m);
    if cell < 1 || cell > 2

% A constant temp value was given as the cell type
cells(n,m).T_K = CtoK(cell);
cells(n,m).type = ConstantTemp;

    else
cells(n,m).type = cell;

    end
    % } // STRUCT CELL
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  end
end

Nodes are the simulation points where the field
is evaluated

global width_nodes height_nodes
% Not counting the two outermost cells in each row/column,
% every two cells share a third node in the middle.
width_nodes  = (width_cells  - 2) + 1;
height_nodes = (height_cells - 2) + 1;

global num_nodes
num_nodes = width_nodes * height_nodes;

global nodes;
for m = 1:width_nodes
  for n = 1:height_nodes
    % STRUCT NODE {
    nodes(n,m).m = m;
    nodes(n,m).n = n;
    nodes(n,m).case = 0;
    nodes(n,m).T_K = 0;
    % These coefficients define the heat transfer into a node as a
 function
    % of its four neighbors, each scaled by a coefficient, and all
 summed
    % with the constant term.
    %                   E N W S +constant
    nodes(n,m).coeff = [0 0 0 0 0];
    nodes(n,m).active = true;
    nodes(n,m).hLabel = 0;
    % } // STRUCT NODE
  end
end

Finish setting up the geometry now that we
know the refinement

Env.Geometry.Dx = Env.Geometry.L / width_nodes;

Precomputed coefficients for heat equations
Env.Coeff.H = Env.Materials.fluid.h * Env.Geometry.Dx
   ...

/ Env.Materials.metal.k;

Arrange figures on screen
set(0,'units','pixels');
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screen_size = get(0,'screensize');
screen_half_w = screen_size(3) / 2;
screen_half_h = screen_size(4) / 2;

for i = 1:4
  f = figure(i);
  f.ToolBar = 'none';
  f.MenuBar = 'none';
  p = f.Position;
  p(3) = 560;
  p(4) = 420;
  p(1) = (screen_half_w - p(3)) + mod(i,2) * 560;
  p(2) = (screen_half_h - 2*p(4) - 30) + ceil(i/2) * 450;
  f.Position = p;
end
figure(5);
clf;cla;
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vvvvvvv User interaction loop vvvvvvv
% Measuring stats between iterations
hTemps = 0;
hConverge = 0;

% Until ctrl-c, close figure, etc.
while true
  % This has to come first so we can draw on it as a background
  draw_cells();

if (toc(Input.last_click_t)) > 0.5

  % Compute the temperature distribution for the new mesh
  tic
  initialize_nodes();
  toc
  draw_nodes();

  node_temps = [];
  dTs = [];
  times = [];

  %disp("Iterating...");
  i = 1;
  node_temps(i,:) = [nodes.T_K];

  dT = 2;

  tic
  while dT > 1
    tic

    dT = iterate();
    dTs(i) = dT;

    draw_nodes();

    i = i + 1;
    node_temps(i,:) = [nodes.T_K];

    times(i) = toc * 1000;
  end

  %disp("Done.");

  figure(3);
  clf;cla;

  subplot(2,1,1);
  plot(KtoC(node_temps));
  xlim([1 i]);
  tex_title("Node temperature convergence");
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  tex_y('$T\;\mathrm{\left(^\circ C\right)}$');

  subplot(2,1,2);
  plot(dTs);
  xlim([1 i]);
  tex_x('Iteration');
  tex_y('max$\left(dT\right)$ in K');

  figure(4);
  plot(times);
  xlim([1 i]);
  tex_title("Iteration timing");
  tex_x("Iteration");
  tex_y("Duration (ms)");

  figure(2);
  clf;cla;
  % Unrefined nodes grid
  [M,N]   = meshgrid(1:width_nodes);

  % Make a refined grid to interpolate onto
  [Mq,Nq] = meshgrid(1:0.01:width_nodes);

  for m = 1:width_nodes
    for n = 1:height_nodes
      T(n,m) = KtoC(nodes(n,m).T_K);
    end
  end

  % Interpolate onto refined grid
  Tq = interp2(M, N, T, Mq, Nq);
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Draw results
  % Draw interpolated temps
  colormap default;
  s = surf(Mq,Nq,Tq);
  s.EdgeColor = 'none';
  c = colorbar;
  c.Label.String = '$^\circ$C';
  c.Label.Interpreter = 'latex';
  c.Label.FontSize = 12;
  view(2);

  % Draw grid
  hold on;
  s = surf(M,N,T);
  s.FaceColor = 'none';
  s.EdgeAlpha = 1;
  s.LineStyle = ':';
  view(2);

  xlim([0 width_cells]);
  ylim([0 height_cells]);
  xticks(1:width_nodes);
  yticks(1:height_nodes);

  figure(5);
  if Handle.surf3 ~= 0
    Handle.surf3.ZData = Tq;
    Handle.surf3g.ZData = T;
  else
    Handle.surf3 = surf(Mq,Nq,Tq);
    hold on;

    axis vis3d;
    view(45, 18);
    zlabel("^\circ C", 'fontsize', 12);
    Handle.surf3.EdgeColor = 'None';
    % Draw grid
    hold on;
    Handle.surf3g = surf(M,N,T);
    Handle.surf3g.FaceColor = 'none';
    Handle.surf3g.EdgeAlpha = 1;
    Handle.surf3g.LineStyle = ':';

  end

  delete(Handle.ctexts);

  for m = 1:width_nodes
    for n = 1:height_nodes
      Handle.ctexts = [Handle.ctexts text(m, n, T(n,m) + 5,
 sprintf("%.0f", T(n,m)))];
    end
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  end

  figure(6);
  clf;cla;
  colormap default;
  contourf(KtoC(T), 'showtext', 'on');

  draw_nodes();

14



15



end % if click_wait_elapsed then iterate and draw

  % Start of a new interaction loop
  try
    [m, n, button] = wait_for_clicked_cell();

    if is_valid_cell(m,n)
      Input.last_click_t = tic;
      stop(Input.mouse_timer);
      start(Input.mouse_timer);
    end

    % Ugly hack for a big UX improvement (delayed simulation start)
    m = Input.last_m;
    n = Input.last_n;

    if ~is_valid_cell(m,n); continue; end

    % totally normal language with no case fallthrough
    if button == 2; button = 1; end
    switch button
    case 1; cycle_cell_type(m, n);
    case 3; prompt_new_temp_for_cell(m, n);
    end

  catch ex
    switch ex.identifier
      case 'MATLAB:ginput:FigureDeletionPause'
        break
      otherwise
        rethrow(ex)
    end
  end
end

info("\n\nGoodbye!\n\n");

^^^^^^^ User interaction loop ^^^^^^^

Replaces the current system state with the
next computed state.

Returns the maximum magnitude of change in temperature among any node.

function [max_dT] = iterate()
  global nodes width_nodes height_nodes;

  next_nodes = nodes;

  % Maximum temperature change this iteration; converged when small
  max_dT = 0;
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  for m = 1:width_nodes
    for n = 1:height_nodes
      node = get_node(m, n);

      if node.case == 0 || ~node.active; continue; end

      % Initialize to the constant term and sum the weighted neighbors
      node.T_K = node.coeff(5);

      neighbors = nodes_around(m, n);

      for neighbor = neighbors
        coeff  = node.coeff(neighbor.dir);
        node.T_K = node.T_K + coeff * neighbor.T_K;
      end

      % Measure convergence
      max_dT = max(max_dT, abs(node.T_K - next_nodes(n,m).T_K));

      next_nodes(n,m) = node;
    end
  end

  nodes = next_nodes;

end

Analyzes the material cells and configures the
nodes

Node equations chosen according to: Bergman & Lavine 2017 - Fundamentals of Heat and Mass Transfer,
p. 226 Table 4.2: Summary of nodal finite-difference equations

function initialize_nodes()
  global width_nodes height_nodes;

  debug("Determining node types:\n");

  for m = 1:width_nodes
    for n = 1:height_nodes
      node  = reset_node(m, n);
      cells = cells_around(m, n);

      debug("(%d,%d)", m, n);

      % Short circuiting
      try_case0(node, cells) || ...
      try_case1(node, cells) || ...
      try_cases234(node, cells);                              
  %#ok<VUNUS> % leave me alone I know it's dumb
    end
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  end

end % initialize_nodes()

Draws and labels the nodes' states on top of
the field

function draw_nodes()
  global width_nodes height_nodes;

  figure(1);

  for m = 1:width_nodes
    for n = 1:height_nodes
      node = get_node(m,n);

      % Ignore nodes that have become unreachable due to drowning
      if ~node.active
        if node.hLabel ~= 0
          node.hLabel.Visible = false;
        end
        continue;
      end

      if node.hLabel == 0
        color = 'w';
        switch node.case
        case 0
          color = 'y';
        case 1
          color = [.85 .85 .85];
        case 2
          color = [0.796, 0.925, 0.945];% If I had kept the first
 colors I chose
        case 3                          % then I would have submitted
 on time
          color = [0.351, 0.753, 0.826];
        case 4
          color = [0.062, 0.560, 0.635];
        end

        [x, y] = mn_to_xy(m, n);
        plot(x, y, '.w', 'markersize', 70, 'markeredgecolor', color);

        node.hLabel = label_mn(m, n, sprintf("%d",
 round(KtoC(node.T_K))));
        commit_node(node);

      else
        set(node.hLabel, 'string', round(KtoC(node.T_K)));

      end
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    end
  end

  drawnow();

end

Tries to process the node as having a constant
surface temperature

function [classified] = try_case0(node, neighbor_cells)
  global ConstantTemp

  classified = false;

  % Case 0: node touching a constant-temp cell is constant temp

  cells = [neighbor_cells.cell];
  types = [cells.type];
  cells = cells(types == ConstantTemp);

  % Average the neighboring cell temps
  Ts = mean(arrayfun(@(c) c.T_K, cells));
  if isempty(Ts) || isnan(Ts) || Ts == 1 || Ts == 2
    % not a constant temperature
    return
  end

  node.case = 0;
  node.T_K = Ts;

  debug(" --> constant temp\n");

  commit_node(node);
  classified = true;

end % try_case0()

Tries to process the node as an interior con-
duction node

function [classified] = try_case1(node, neighbor_cells)
  global Conductive

  classified = false;

  % Case 1: all edges are interior (between two conduction cells)
  cells = [neighbor_cells.cell];
  types = [cells.type];
  cells = cells(types == Conductive);
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  if length(cells) == 4
    node.case = 1;
    % eq. 4.29, Bergman & Lavine 2017 p. 226
    node.coeff = [.25 .25 .25 .25 0];

    debug(" --> conductive\n");

    commit_node(node);
    classified = true;
  end

end % try_case1()

Tries to process the node as having convective
neighbors

function [classified] = try_cases234(node, neighbor_cells)
  global Convective Conductive Env

  cells = [neighbor_cells.cell];
  types = [cells.type];

  conv_cells = cells(types == Convective);
  cond_cells = neighbor_cells(types == Conductive);

  % The number of convective cells touching this node determines the
  % heat equation
  n_conv = length(conv_cells);

  switch n_conv
  case 0
    throw("It couldn't be any other type of node");

  case 4
    % The node has become unreachable in a fluid domain
    debug(" node drowned\n")
    node.T_K      = mean([conv_cells.T_K]);
    node.active = false;

  otherwise
    node.case = 1 + n_conv;

    debug(" convection with %d cells, with conduction along:\n",
 n_conv);
    % The convective node equation is of the form
    % Ti = Ci ( Ce Te + Cn Tn + Cw Tw + Cs Ts + H Tinf )
    % Where
    %   - Ci is determined from the number of convective nodes,
    %   - each of Ce, Cn, Cw, Cs is determined from the number of
    %     conductive cells bordering the edge to that node, and
    %   - Tinf is the average of all the convective nodes'
 temperatures.
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    % Constant term
    Tinf          = mean([conv_cells.T_K]);
    node.coeff(5) = Env.Coeff.H * Tinf;

    % Examine the cells touching each conduction path. Each conductive
    % cell contributes half of the influence from that neighboring
 node.
    % Edges are in CCW order: E N W S

    % If dotting the vector from the node to a cell's center with one
 of
    % these vectors yields a positive result then that cell is
 touching
    % that edge.
    edges = [ 1 0 ; 0 1 ; -1 0 ; 0 -1 ];

    for i = 1:4
      edge = edges(i,:);
      debug("    edge %d (%d,%d)\tvia: ", i, edge(1,1), edge(1,2));
      for cell = cond_cells
        if dot(edge, cell.v) > 0
          node.coeff(i) = node.coeff(i) + 0.5;
          debug("(%d,%d) ", cell.m, cell.n);
        end
      end
      debug("\n");
    end

    % Overall coefficient
    C = 1 / (4 - n_conv + Env.Coeff.H);
    node.coeff = C * node.coeff;

  end % switch n_conv

  commit_node(node);
  classified = true;

end % try_case234()

Draws and labels the material cells as the base
of a new image

function draw_cells()
  global Env width_cells height_cells Conductive;

  pixels = zeros(width_cells, height_cells);

  for m = 1:width_cells
    for n = 1:height_cells
      cell = get_cell(m,n);
      pixels(n,m) = cell.type;
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    end
  end

  figure(1);
  clf;cla;

  % Arranged so that the cell types index into this colormap correctly
        %       yellow       grey         blue
  colormap([1 .890 .333; .8 .8 .8; .188 .812 .977 ])

  imagesc(pixels, [0 2]);
  view(2);
  grid on;
  hold on;
  % The default axes have the ticks marking the cell centers instead
 of
  % the nodes. Adjust everything by half a cell to shift the ticks
 over
  % to the nodes and make the label integral.
  xticks(mn_to_xy(1:width_cells));
  xticklabels(1:width_cells-1);
  yticks(mn_to_xy(1:height_cells));
  yticklabels(1:height_cells-1);
  % Flip the Y axis so the ticks increase vertically
  set(gca,'YDir','normal')

  for m = 1:width_cells
    for n = 1:height_cells
      c = get_cell(m, n);
      if c.type ~= Conductive
        % Label cell centers instead of nodes (i.e. don't adjust from
 the
        % imagesc coordinate system).
        label_xy(m, n, sprintf("%d", round(KtoC(c.T_K))));
      end
    end
  end

  %tex_title(["Click to change cell type;\quad Right click to set
 temperature", sprintf("Yellow: constant temp ($^\\circ$C); grey
 metal (k=%.0f); blue fluid (h=%.0f)", Env.Materials.metal.k,
 Env.Materials.fluid.h)]);

  drawnow();

end % draw_cells()

Returns location details of the cells contacting
the node at (m,n)

function [cells] = cells_around(m, n)
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  global width_cells height_cells;

  if (m >= width_cells) || (n >= height_cells) || (m <= 0) || (n <= 0)
    cells = [];
    return
  end

  m = m + 1;
  n = n + 1;

  % Every node m,n is the bottom-left corner of a cell m,n
  M = [ m  m-1  m-1   m  ];
  N = [ n   n   n-1  n-1 ];

  % Clip at the major border (clipping on the minor border is implicit
  % because the mouse picker gives indices starting at (1,1) and the
 cell
  % coordinates we're going to get are 0 based).
  is_valid = (M <= width_cells) .* (N <= height_cells);
  M = M(is_valid > 0);
  N = N(is_valid > 0);

  % Get a vector to the cell's center. A cell will affect an edge
 between
  % nodes A and B if the vector from A-->B projects onto this vector
 with
  % a positive sign.
  V = [((M-m)*2+1)' ((N-n)*2+1)'];

  for i = 1:length(M)
    cells(i).m = M(i);
    cells(i).n = N(i);
    cells(i).v = V(i,:);
    cells(i).cell = get_cell(M(i), N(i));
  end

end % cells_around()

Returns location details of the nodes contact-
ing the node at (m,n)

function [nodes] = nodes_around(m, n)
  global width_nodes height_nodes;

  if (m > width_nodes) || (n > height_nodes) || (m <= 0) || (n <= 0)
    nodes = [];
    return
  end

    %    E    N    W    S
  M = [ m+1   m   m-1   m  ];
  N = [  n   n+1   n   n-1 ];
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  is_valid = (M <= width_nodes) .* (N <= height_nodes) .* (M > 0) .*
 (N > 0);
  M = M(is_valid > 0);
  N = N(is_valid > 0);

  nodes = arrayfun(@get_node, M, N);

  for i = 1:length(nodes)
    nodes(i).dir = 1+mod(round((atan2(nodes(i).n - n, nodes(i).m - m)
 + 2*pi) * 2/pi), 4);
  end

end % nodes_around()

Changes the given cell to the next type (e.g.
metal, fluid, constant temp)

function cycle_cell_type(m, n)
  global ConstantTemp;

  cell = get_cell(m, n);

  cell.type = mod(cell.type + 1, 3);
  if cell.type == ConstantTemp
    cell.T_K = CtoK(300);
  end

  commit_cell(cell);
end

Prompts the user for a temperature in degrees
Celsius

If a valid temperature is given then the given cell is set to that
temperature.

function prompt_new_temp_for_cell(m, n)
  global Input Conductive ConstantTemp

  stop(Input.mouse_timer);

  response = inputdlg("Enter a temperature in *C");
  if ~isempty(response)
    new_temp = str2double(response{1});
    if ~isempty(new_temp) && new_temp >= 0

cell = get_cell(m, n);
cell.T_K = CtoK(new_temp);
if cell.type == Conductive
cell.type = ConstantTemp;

24



      end
      commit_cell(cell);
    end
  end
  Input.last_click_t = tic;
  start(Input.mouse_timer);
end

Get a clicked point from the user until the point
is inside a cell.

function [m, n, button] = wait_for_clicked_cell()
  global Input

  m = -1;
  n = -1;

  figure(1);

  [mx, my, button] = ginput(1);
  m = xy_to_mn(mx);
  n = xy_to_mn(my);

  if is_valid_cell(m,n)
    Input.last_m = m;
    Input.last_n = n;
  else
    Input.last_m = 0;
    Input.last_n = 0;
  end
end

function pressEnter(~,~)
  import java.awt.*;
  import java.awt.event.*;
  rob = Robot;
  rob.keyPress(KeyEvent.VK_ENTER)

  rob.keyRelease(KeyEvent.VK_ENTER)
end

Goodbye!
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Returns true if the given coordinates are in the
field

function [is_valid] = is_valid_cell(m, n)
  global width_cells height_cells;
  is_valid = ~isempty(m) && ~isempty(n) && (m >= 1) && (m <=
 width_cells) && (n >= 1) && (n <= height_cells);
end

Returns the node at the given coordinates
function [node] = get_node(m, n)
  global nodes;
  node = nodes(n, m);
end

Overwrites the node in the field with the given
value

function set_node(m, n, value)
  global nodes;
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  nodes(n, m) = value;
end

Elapsed time is 1.928866 seconds.
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Updates the node in the field from the given
value

function commit_node(node)
  set_node(node.m, node.n, node);
end

Resets the node at the given coordinates to its
initial state

function [node] = reset_node(m, n)
  global nodes;
  node = nodes(n, m);
  node.T_K = 0;
  node.hLabel = 0;
  node.active = true;
  node.coeff = [0 0 0 0 0];
  commit_node(node);
end

Returns the cell whose bottom-left node is at
the given coordinates

function [cell] = get_cell(m, n)
  global cells;
  cell = cells(n, m);
end

Overwrites the cell whose bottom-left node is
at the given coordinates

function set_cell(m, n, value)
  global cells;
  cells(n, m) = value;
end

Updates the cell in the field from the given val-
ue

function commit_cell(cell)
  set_cell(cell.m, cell.n, cell);
end
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Converts imagesc coordinates to node coordi-
nates

The image has weird coordinates because the cells are pixels, so the integral coordinates are at cell centers
and nodes are on half-coordinates.

function [varargout] = xy_to_mn(varargin) %#ok<*DEFNU>
  for i = 1:min(nargin,nargout)
    varargout{i} = floor(varargin{i} + 0.5);
  end
end

Converts node coordinates to imagesc coordi-
nates

function [varargout] = mn_to_xy(varargin)
  for i = 1:min(nargin,nargout)
    varargout{i} = varargin{i} + 0.5; %#ok<*AGROW>
  end
end
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Labels the current imagesc at a point in im-
agesc coordinates

function [h] = label_xy(x, y, s)
  h = text(x, y, s, 'horizontalalignment', 'center');
end
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Labels the current imagesc at a point translat-
ed from node coordinates

function [h] = label_mn(m, n, s)
  [x, y] = mn_to_xy(m, n);
  h = label_xy(x, y, s);
end

function [C] = KtoC(K)
  C = K - 273.15;
end

function [K] = CtoK(C)
  K = C + 273.15;
end

function tex_title(s)
  title(s, 'interpreter', 'latex', 'fontsize', 12);
end

function tex_x(s)
  xlabel(s, 'interpreter', 'latex', 'fontsize', 12);
end

function tex_y(s)
  ylabel(s, 'interpreter', 'latex', 'fontsize', 12);
end

function message(level, varargin)
  if ~level; return; end
  fprintf(1, varargin{:});
end

function debug(varargin)
  global DEBUG;
  message(DEBUG, varargin{:});
end

function info(varargin)
  global INFO;
  message(INFO, varargin{:});
end

Published with MATLAB® R2021a
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